
IM-POST-755978 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52 07NA27344

We expect to demonstrate a larger speedup when executing kernels
on the graphics accelerator. Allocating host memory is over 35 times
faster than device memory, so any reduction in the number of CUDA
system calls required would have a substantial impact on runtime.

UMPIRE currently relies on a map of allocator name strings to look
up allocators. We expect that using an integer ID to index into a
vector of allocators will improve performance and bring UMPIRE to
within 0.2% of the reference malloc and free performance when
executing on the host.

UMPIRE currently models data transactions between two execution
spaces, the host and device. We wish to explore structural changes
that model transactions as occurring between allocators, providing
the flexibility to support both alternative strategies for memory
management and novel machine architectures, such as utilizing an
NVME cache on the host.

KULL supports the concepts of regions, or processing areas smaller
than the full mesh. It is not feasible to have every region stored at
the size of the full mesh due to memory limitations, so they may
increase or decrease in size as the simulation progresses. We wish
to explore heuristics for determining when and how to reallocate
memory for region-based fields.

The transition to a host-device model has highlighted difficulties in
maintaining high performance across machine architectures. KULL
has many physics packages with different data locality needs.

The Equation of State package might update a density field from
the CPU, while the hydrodynamics package may need to access the
same field from the GPU. Manually managing transfers is costly
due to the many possible system configurations. UMPIRE abstracts
these challenges by defining a platform-independent API to handle
both allocations and movement.

Pursuing Performance Portability

KULL is a complex multiphysics code that heavily uses advanced
C++ language features including templates and virtual inheritance.
It has historically been run only on homogeneous systems, but is
transitioning to support the heterogeneous model of Sierra, a new
supercomputer based on IBM Power 9 and NVIDIA Volta processors.

Complex data dependencies between physics packages complicate
memory management in heterogeneous environments. We examine
how UMPIRE, a portable API for memory management, can be used
to manipulate memory in a platform-agnostic fashion and improve
allocation performance through pooling with minimal overhead.

We demonstrate a 1.2% speedup in runtime using UMPIRE memory
pooling on host-only systems, and do not find significant overhead
from the library itself. The preliminary results show promise for
significant gains when optimizing expensive device allocations.

Abstract

UMPIRE allows users to define custom memory allocators, enabling
straightforward implementations of memory pools. Pooling reduces
fragmentation and overhead costs by pre-allocating large segments
of fixed-size blocks that can be cheaply reassigned as needed.

Memory Pooling

Memory pooling offers a 1.2% speedup in host-only runtime over the
baseline implementation for sufficiently large mesh sizes. However,
it degrades performance by up to 25% on smaller meshes.

Profiling calls indicate the gains on large meshes are from decreased
deallocation costs, while the losses on small meshes are distributed
across allocation, deallocation, initialization, and destruction. One
potential cause is unnecessary attempts to merge blocks of memory.

The data was averaged from 20 benchmarking runs on nodes in the
genie cluster. Benchmarks used a weekly-release build of KULL
with debugging symbols enabled. Runs were terminated after 100
timesteps. Longer runs of 1000 timesteps produced similar results.

Performance Gained Through Pooling

A second goal was to eliminate inefficiencies
within in the UMPIRE library. Benchmarking
indicates its pointer introspection capability
incurs a substantial performance penalty, as
versions without it match baseline speeds.

Analyzing UMPIRE’s call graph with Valgrind
determined that the UMPIRE version without
introspection still incurred a 0.7% runtime
penalty. 80% of the remaining overhead was
caused by map lookups for allocator names.

Overhead Introduced by Umpire

Conclusions

Memory pooling provides a small benefit on
the CPU, at the cost of being very sensitive
to parameters such as block size. However, it
shows potential for applications with GPU
accelerators, where memory operations are
an order of magnitude more expensive.

When optimized, UMPIRE introduces a small
(0.7%) amount of overhead in KULL, which
can be reduced further through tuning of its
internal data management algorithms.

Future Work

References
1. J.A. Rathkopf et al. KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code. 

Pittsburgh, PA: American Nuclear Society, 2000.
2. https://wci.llnl.gov/simulation/computer-codes
3. https://github.com/LLNL/Umpire

1Lawrence Livermore National Laboratory, 2California Polytechnic State University at San Luis Obispo
Christopher Scarborough1,2, Riyaz Haque1

Optimizing Memory Management in KULL with UMPIRE

The optimized build of UMPIRE disables pointer introspection and patches the search algorithm
for free memory blocks to achieve comparable performance to the non-UMPIRE build in overall
runtime and allocation speed. Much of the remaining delta stems from calls to getAllocator.

Higher is better

Higher is better

https://wci.llnl.gov/simulation/computer-codes
https://github.com/LLNL/Umpire

